1,008 research outputs found

    Theory of fission-mass distributions demonstrated for 226Ra, 236U, 258Fm

    Get PDF
    With the mass asymmetry described by the dynamical collective fragmentation coordinate ξ, and with use of the asymmetric two-center shell model, the fission mass distributions for 226Ra, 236U, and 258Fm (which are typical representatives for triple-, double-, and single-humped distributions) are explained

    Non-trivial fixed points of the scalar field theory

    Get PDF
    The phase structure of the scalar field theory with arbitrary powers of the gradient operator and a local non-analytic potential is investigated by the help of the RG in Euclidean space. The RG equation for the generating function of the derivative part of the action is derived. Infinitely many non-trivial fixed points of the RG transformations are found. The corresponding effective actions are unbounded from below and do probably not exhibit any particle content. Therefore they do not provide physically sensible theories

    Quasi-continuous symmetries of non-Lie type

    Get PDF
    We introduce a smooth mapping of some discrete space-time symmetries into quasi-continuous ones. Such transformations are related with q-deformations of the dilations of the Euclidean space and with the non-commutative space. We work out two examples of Hamiltonian invariance under such symmetries. The Schrodinger equation for a free particle is investigated in such a non-commutative plane and a connection with anyonic statistics is found. PACS: 03.65.Fd, 11.30.E

    Shell-model treatment of nuclear reactions

    Get PDF
    A method is developed for the calculation of resonant nuclear states which preserves as many features of the shell model as possible. It is an extension of the R-matrix theory. The necessary formulas are derived and a detailed description of the computational procedure is given. The method is valid up to the two-particle emission threshold. With the assumption of consecutive decay of the nucleus, the two-particle emission process can also be described. The treatment is antisymmetrized in all particles

    Damping of the giant resonance in heavy nuclei

    Get PDF
    In heavy nuclei the damping of the giant resonance is due to thermalization of the energy rather than to direct emission of particles; the latter process is strongly inhibited by the angular-momentum barrier. The thermalization proceeds via inelastic collisions leading from the particle-hole state to two-particle-two-hole states. In heavy nuclei, several hundred such states are available at the energy of the giant dipole resonance. The rather large width of the giant resonance arises from the addition of many small partial widths of channels leading to the different two-particle-two-hole states. Both the density of the two-particle-two-hole states and the mean value of the interaction matrix elements between the particle-hole and two-particle-two-hole states are evaluated in a simplified square-well shell model. In a given nucleus the energy dependence of the widths is determined mainly by the density of states; the A dependence is determined mainly by the size of the matrix elements. For A ~ 200, we find 0.5 <= Γ <=2.5 MeV. The uncertainty in this value comes mostly from the uncertainty in the strength of the interaction. Representing the energy dependence of the width by a power law we find for the exponent the value ~ 1.8

    Influence of nuclear forces on Coulomb fission

    Get PDF
    The Coulomb-fission cross sections for 132Xe and 148Nd incident on 238U are calculated in a dynamical classical model. In particular the influence of nuclear forces on the cross sections is studied. Since they are counteracting the Coulomb force, they diminish the cross sections for Coulomb fission significantly and shift the Coulomb barrier towards lower energies

    Higher-order effects in electron-nucleus scattering

    Get PDF
    Higher-order effects are calculated in the framework of the eigenchannel theory for elastic and inelastic electron-nucleus scattering in the energy region 100&#8804;E&#8804;250 MeV. A dispersion effect of about 12% is found for the elastic scattering on Ni58 at a momentum transfer q&#8776;500 MeV/c. For inelastic scattering, the reorientation effect is discussed, in addition to the dispersion effect. The total higher-order effect changes the form factor for a hindered first-order transition by 50% at its minima. Furthermore, the dependence of the higher-order effects on the transition potentials of the virtual excitations, the model dependence, and the dependence on the energy E of the electron and the momentum transfer q are discussed. A closed formula for the S matrix is developed by calculating the eigenchannels in stationary perturbation theory

    Dynamic theory of the nuclear collective model

    Get PDF
    The rotation-vibration model and the hydrodynamic dipole-oscillation model are unified. A coupling between the dipole oscillations and the quadrupole vibrations is introduced in the adiabatic approximation. The dipole oscillations act as a "driving force" for the quadrupole vibrations and stabilize the intrinsic nucleus in a nonaxially symmetric equilibrium shape. The higher dipole resonance splits into two peaks separated by about 1.5-2 MeV. On top of the several giant resonances occur bands due to rotations and vibrations of the intrinsic nucleus. The dipole operator is established in terms of the collective coordinates and the γ-absorption cross section is derived. For the most important 1- levels the relative dipole excitation is estimated. It is found that some of the dipole strength of the higher giant resonance states is shared with those states in which one surface vibration quantum is excited in addition to the giant resonance

    Theory of induced molecular-orbital K x rays in heavy-ion collision

    Get PDF
    The mechanisms of spontaneous and induced emission of radiation are derived from the Dirac equation in a rotating coordinate system. The molecular-orbital x-ray spectra exhibit a strong asymmetry with respect to the beam axis. The asymmetry peaks for the high-energy transitions, which can be used for spectroscopy of two-center orbitals
    • …
    corecore